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At PDG Consulting, we work with a wide variety of clients, including the major 
players in the entertainment industry. They trust our technology and domain   
expertise, and frequently bring us in to help them with their toughest, most 

innovative, high value endeavors. 

Recently, our client, a leading TV distributor for households, hired us to build a 
critical, ambitious Business Intelligence (BI) platform that would provide their 
advertising and operations teams with dynamic, actionable dashboards of ad 
performance data and insights. The new system would also have to be able to 
predict the performance of future advertising campaigns. This meant we had to 
solve quite a few complex, interesting problems. Now that we’ve tackled these 
challenges, with the new platform already in production and bringing value every 
day to our users, we’d like to share the approach and solutions we came up with to 
build this state-of-the-art BI tool.
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Context
Our client is a leading distributor of television channels to millions of households. 
Their customers can access the content through two different pipelines: 1- Via 
satellite: a parabolic antenna (“dish”) receives the live data and sends it to a device 
known as a set-top box (STB) which is connected to the television; 2- Via an app, 
which displays streaming data received over the internet (this is known as over-the-
top, or OTT).

For both of these data pipelines, our client is also responsible for the dynamic 
insertion of targeted advertisements. Their systems perform the ad insertion in the 
available inventory of breaks for each channel. The choice and prioritization of ads 
shown to each customer are based on the just-in-time execution of specific business 
rules, which run in the firmware of each STB, in the case of satellite-based delivery.

The diagram below gives a high-level view of the systems involved in the satellite-
based delivery of targeted ads to customers:

Figure 1: Satellite-based targeted ad delivery

In Figure 1, we see that the satellite pushes frequently updated sets of data to the 
customer’s set-top box:

• Ad campaign configurations

• Inventory of upcoming breaks per channel

• Customer profiles

• Ad video content
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The set-top box is responsible for executing the business rules that combine 
this data to determine the most pertinent ads to display to each customer, for a 
given upcoming scheduled break, and dynamically inserts these ads on top of the 
underlying ads on the channel. 

The vast majority of set-top boxes are connected to the internet and frequently 
send back events pertaining to: 

• Viewership: channel, and start and end time of a viewership event (this includes 
live view events, as well as playback of recorded content)

• Ad impressions: an impression event is a single viewing of a given ad 

Objectives
Our project, to which we will refer as the AdsIntelligence project, has ambitious 
goals and deliverables:

• Build a centralized platform that will become the one-stop shop for all ad 
related data

• Provide users with dynamic configurable dashboards that allow them to slice-
and-dice across very large volumes of historical data

• Compute aggregated metrics, for past, active, and future advertising campaigns

• Predict the performance of upcoming ad campaigns 

• Alert users as to which active or future ad campaigns will under- or over-
perform, so that they can adjust campaign configurations in real time

By leveraging these capabilities, the users can easily get answers to the following 
questions (and more):

• Can I understand the behavior of my campaigns by easily slicing-and-dicing 
across facets of all my historical data points?

• How many impressions can we sell across different sales categories?

• How many impressions do I expect a future campaign to deliver based on 
previous similar campaigns?

• Why is an ad campaign under-/over- delivering?

• Will an ad campaign reach its impression target?

• Are we maximizing the use of the available advertising inventory?
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In order to offer these high-value features, our platform needs to leverage a set of 
robust ETL pipelines that will feed a centralized datalake with data from a wide set 
of sources:

• Customer viewership events

• Ad impressions

• Customer profiles, including persistent and campaign-related (ephemeral) 
attributes

• Ad campaigns

• Ad break inventory

• Channel inventory, including those that support targeted ad insertion (known as 
Addressable)

• Program schedules

Volume of data
Here is a quick summary of the volumes of data that we store and analyze:

• Customer profiles: 15M

• Ad campaigns: 70K total, 200 active

• Viewership events: 150M per day, 2 GB per day

• Impression events: 200M per day, 10 GB per day

• Ad break inventory: 10K per week

What we needed to solve
To provide our client with the powerful and ambitious platform they had hired us to 
build, we had to solve the following challenges:

• Optimize the storage of very large volumes of data

• Build robust ETL pipelines with resiliency

• Find a performant way to query very large volumes of semi-structured data

• Provide a user-friendly Business Intelligence UI, with fast slice-and-dice and 
aggregation capabilities

• Develop models and algorithms to accurately predict the performance of future 
advertisement campaigns

In the following paragraph, Architecture, we describe the architecture we created 
that solved these challenges in an elegant and maintainable way.
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Figure 2: AdsIntelligence Architecture
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The diagram below illustrates the architecture of the AdsIntelligence platform:

Architecture
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Let’s walk through the various components of the architecture illustrated in Figure 2.

Campaign data extraction
On the left hand-side, we see components that are running in our client’s 
on-premise datacenter. We deployed a cluster of small Spring Boot based 
microservices, whose responsibility is to regularly extract data from the 
advertisement campaign management system, via its legacy SOAP API, as well as 
perform some direct queries to the database for data that is not exposed via the 
API. The microservices then push the extracted data to a landing area in AWS S3 
buckets.

ETL pipelines and datalake
The larger right-hand side of the diagram contains a collection of components that 
are all running in a Production VPC on AWS. The bulk of these components are ETL 
pipelines that are based on AWS Glue workflows. The Glue jobs are responsible 
for loading data from the various data source buckets on the left, applying 
transformations and filters to the data, and writing the transformed data to a group 
of S3 buckets that make up our datalake.  All the data in the datalake is written 
using a format called Apache Parquet, which is a binary column-oriented format, 
and compressed using Google’s Snappy compression algorithm. Where it makes 
sense, we partition the data using Hive-style partition folders, either at the hour or 
day level.

We’ll discuss this in more detail in a dedicated paragraph, but it’s important to point 
out that we leverage many of Glue’s awesome built-in features, such as triggers, 
workflows, bookmarks, and crawlers. 

We can see on the diagram that two of our ETL pipelines use Glue jobs to read data 
from Couchbase buckets. Couchbase is a hybrid document and key-value NoSql 
store, and we read documents from Couchbase DBs owned by other systems, one 
for customer profiles, the other for program schedules and metadata. Both jobs 
leverage the Couchbase Spark Connector.

Heavy lifting: computational analytics and predictive 
algorithms
The complex analytics and predictive algorithms are performed by three different 
distributed computing jobs, using Apache Spark. They run on AWS’s EMR service 
(Elastic Map Reduce), which offers the power and flexibility of running Spark jobs on 
a managed platform, where we can easily tune our jobs as far as number of CPUs, 
memory, number of executor instances, executor instance types, etc. (more on this 
below).

We leverage a first Spark job to run algorithms that predict future viewership events. 
Our model analyzes historical viewership behavior. The result, combined with the 
inventory of future ad breaks, is used to produce a set of expected viewership 
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events over a sliding window of future time. We’re proud to say we’ve achieved 
excellent accuracy in our viewership predictions (which also confirms that most 
people are creatures of habit and have semi-repetitive viewing behaviors).

A second Spark job is responsible for computing the ad impression capacity, which 
is the theoretical maximum number of ad impressions that customers could see if 
every single ad break was utilized in an optimal manner by the active ad campaigns. 
We compute a historical capacity, based on actual viewership events, as well as a 
predicted capacity, which utilizes our predicted viewership data (itself produced by 
the previously mentioned Spark job).

The piece de resistance is the third Spark job. Using a complex algorithm, it 
combines the predicted viewership data with in-flight and future campaign 
information, and creates a prediction of expected number of impressions, over a 
sliding window of future time. In addition to leveraging Spark on EMR, this job also 
makes use of Redis, the very fast key-value datastore, which we configured using the 
Elasticache managed service from AWS.

What the users see: BI dashboards
It would be pointless to produce all this data in our datalake if we didn’t provide the 
users with powerful visualization tools. We chose Tableau Server as our BI tool of 
choice, with which we built an array of user-friendly dashboards that allow users to 
slice-and-dice across our vast volumes of historical, current and predicted datasets.

The queries against our datalake are performed by an AWS service called Athena, 
which is built on top of Presto, a query engine that supports SQL-like querying 
across vast volumes of structured, semi-structured and unstructured data. In our 
case, Athena queries our Parquet files on S3.

Choice of tools, stacks, and corresponding 
best practices
Here we’ll briefly go through our choices for the tools and stacks that make up our 
architecture, as well as a few of the best practices we’ve learned.

Datalake
The obvious choice for the storage of our data was S3 (Simple Storage Service), 
which provides unbounded, resilient storage at a low cost. For the file format, we 
chose Apache Parquet, which is a binary, column-oriented format and is well 
suited to large, semi-structured, non-relational datasets. It stores the schema inside 
its metadata and has built-in optimizations for things like nullity and repetition of 
values. For compression, we chose Google’s Snappy, an algorithm which offers a 
decent compression ratio, but more importantly is optimized for high compression/
decompression speeds.
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We used the Glue Data Catalog to store the schema and metadata of the tables 
built on top of the various datasets. 

For time-based data, using Hive style (folder name based) partitioning offered 
substantial query performance optimizations. 

With our choice of query engine, Athena, the recommended optimal file size 
is 128 MB, and we strove to keep our file sizes as close as possible to that 
recommendation.

The use of TTL retention policies at the S3 bucket or folder level helped us keep the 
size of our data bounded.

ETL
ETL pipelines are clearly the backbone of our platform’s architecture. To build 
robust and maintainable data flows, we picked AWS Glue, which is an ETL as a 
service. It is built on top of Spark and EMR (Elastic Map Reduce), and therefore offers 
great horizontal scalability and computing power. Glue supports two programming 
languages, Scala and Python. We chose Scala, which is one of the main languages 
supported by Spark, and therefore the de facto 1st class citizen. This also allowed us 
to mix in some Java libraries as needed.

We were able to leverage a slew of built-in Glue features:

• Workflows: the ability to assemble a sequence of Glue jobs and crawlers as a 
runnable unit.

• Triggers: fire off jobs based on schedules or conditions (such as the success of 
a preceding job).

• Worker types and cluster size: as mentioned above, Glue is an abstraction 
layer on top of Spark/EMR. We can configure two types of worker nodes (G1X 
and G2X), as well as define how many nodes a job uses.

• Bookmarks: this has got to be the greatest of all Glue features. Instead of 
having to code this yourself in Spark, Glue gives you the power of bookmarks. 
Each job keeps track of which source data it’s already processed, so that you’re 
always guaranteed to process only new data, even if failures occur.

• Crawlers: Glue crawlers traverse new data files and automatically detect new 
partitions. Crawlers can also automatically infer schemas, although we found it 
is a better practice to explicitly define the schemas in the Glue Data Catalog.

• Network connections: it’s possible to configure Glue network connections 
to allow a Glue job to connect to various external systems. We use them to 
connect to Couchbase instances.

• Console: As with all AWS services, Glue provides a graphical UI.
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Query Engine
The choice of tool to query the data in our datalake was also obvious: Athena. 
Amazon’s Athena is a service that is built on top of Presto, a distributed query 
engine originally built at Facebook. Athena is serverless, and it integrates seamlessly 
with the Glue Data Catalog. It supports ANSI SQL queries that can traverse our large 
datasets. 

We use Athena queries extensively, both for live queries and scheduled queries that 
populate data extracts used by our BI tool (Tableau).

BI Dashboards
As mentioned previously, having an awesome datalake would be pointless 
without a powerful BI tool on top of it, to offer users a collection of fast, dynamic, 
customizable and user-friendly dashboards. The dashboards should give users the 
possibility to visualize aggregated metrics, graphs of key variables over time, as well 
the ability to drill down and slice-and-dice across various facets of the data in an 
efficient manner.

The choice of BI tool was somewhat bumpier than for the other building blocks 
of our platform. We initially opted for Amazon’s Quicksight, which is yet another 
SaaS service in AWS. Quicksight seemed like a suitable candidate for its ease of 
integration with other AWS services. However, we quickly ran into major limitations 
of the product, which we summarize here:

Quicksight limitations & shortcomings:

• SPICE data cache is limited to 250M rows

• Direct SQL queries have a timeout of 2 minutes

• A given widget can only use one dataset

• Parameterized queries are not supported

• Incremental refreshes of datasets are not supported

• Cannot run analyses within the widgets (such as a rolling sum)

• Cannot connect to more than 23 S3 buckets

Having run into the Quicksight limitations listed above, we pivoted and chose one 
of the major players in the BI space: Tableau (as seen on the right-hand side of the 
architecture diagram in Figure 2).
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We run Tableau Server on AWS, and leverage many of its features, including:

• Easy integration with Athena (using AWS IAM credentials)

• Live queries

• Scheduled extracts: scheduled extracts run Athena queries to populate datasets 
stored on the Tableau servers; we use both full and incremental extracts

• Ability to combine datasets in a workbook

• Workbook level aggregations (e.g. rolling sums…)

• Parameterized queries

• Hover tool tips

Distributed computing
In Heavy lifting: computational analytics and predictive algorithms, we described how 
we built models and algorithms that leverage our datasets to provide major value 
to the users of the platform. By performing massively parallel calculations, we 
compute three types of time-based indicators:

1. Impression capacity, both historical and predicted

2. Predicted viewership (over time, by channel and by customer)

3. Predicted campaign performance (predicted impressions over time, by ad 
campaign)

These recurring calculations are performed over datasets so large that a 
conventional, single-runtime (vertically scaled) approach would be fruitless. 
Therefore, our heavy lifting tool of choice is Apache Spark.

Spark is a distributed computing and analytics framework. Originally developed 
at UC Berkeley, it can be described as the grandchild of Hadoop. Whereas 
Hadoop, which performs map-reduce operations, is very I/O intensive as it stores 
intermediate results on disk, Spark uses the notion of RDD (resilient distributed 
datasets) which are partitioned across nodes in a computing cluster, and can 
therefore be thought of as distributed shared memory. Spark supports several 
cluster managers; we use YARN. 

On top of the legacy RDD API, Spark Sql introduces the notion of DataFrames 
(a collection of immutable DataSets), on which we can perform transformations 
and actions using SQL-like APIs and query syntax. At the launch of a Spark job, 
an internal engine computes an optimized execution plan which is modeled as a 
directed acyclic graph (DAG).

We run Spark as an application in Amazon’s EMR (Elastic Map Reduce) service, which 
makes it easy to configure and submit Spark jobs. EMR also provides user-friendly 
UIs.
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From our ongoing experience with Spark, here are some takeaways and 
recommendations:

Spark recommendations:

• Leverage the Spark Sql API as much as possible
• Analyze the DAG in the Spark history server UI to understand performance 

bottlenecks and various issues such as out of memory problems
• Explicitly configure the number of CPU cores and amount of memory used by 

the executors (and the driver)
• Leverage caching (local persistence of intermediate results) of datasets that are 

used multiple times, to limit the amount of data shuffling
• Explicitly configure the number of shuffle partitions; the best practice is to use 2 

times the total number of executor cores
• Eliminate data skews by using salted join columns
• Avoid expensive operations on the driver (such as count, reduce…)
• Repartition data across the cluster using a smart choice of key, to avoid 

subsequent data shuffling
• Explicitly set the garbage collector algorithm to G1 (Spark on EMR uses JDK 8, for 

which G1 is not the default GC algorithm)
• Use broadcast variables for immutable data sets that need to be shared across 

all executors
• Leverage broadcast joins when one side of the join involves a smaller dataset 

that can be broadcast across the cluster
• Test your code locally in the Spark shell
• Launch the Ganglia application on EMR to get a UI that monitors CPU, memory 

and other metrics across the Spark cluster
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Conclusion
In this article, we’ve described an interesting and challenging endeavor that PDG 
Consulting was hired to solve and implement: to provide our client with a powerful, 
state-of-the-art, custom Business Intelligence (BI) platform, that has become the 
unified, central one-stop shop for all their advertisement data. We’ve covered how 
we assembled the right SaaS and managed services to create robust data pipelines 
and populate an ever-growing datalake. By adding the proper query engine and BI 
tools on top of the datalake, we provide the users with the dynamic configurable 
dashboards that allow them to monitor and optimize their advertising campaigns. 

Using innovative algorithms and the Spark distributed computing framework, we’re 
also able to help our client predict the performance of future campaigns, and tune 
them accordingly, even before they become active in production.

We’ve shared some of the problems we encountered, as well as our takeaways and 
best practices. We are currently working on adding many more features to this 
platform, so stay tuned for the inevitable follow-up articles!
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